ウェーブフロント 本社 Official site

[Case Study] Cleaning Process Using Particle-PLUS: CCP

Introduction of Particle-PLUS Analysis Case: "Cleaning Process by CCP" Simulation Case

This is an analysis case regarding CCP (Capacitively Coupled Plasma) etching, which is one of the representative dry etching methods. Particle-PLUS specializes in plasma analysis within vacuum chambers and can perform simulations of etching rates and other parameters at high speed. ◇ Features of 'Particle-PLUS' - Excels in low-pressure plasma analysis. - By combining axisymmetric models with mirror-symmetric boundary conditions, results can be obtained quickly without the need for full device simulations. - Specializes in plasma simulations for low-pressure gases, where fluid modeling is challenging. - Supports both 2D and 3D, allowing for efficient analysis even with complex models. - As a strength of our in-house developed software, customization to fit customer devices is also possible. ◆ Various calculation results can be output ◆ - Potential distribution - Density distribution/temperature distribution/generation distribution of electrons and ions - Particle flux and energy flux to the walls - Energy spectrum of electrons and ions at the walls - Density distribution/temperature distribution/velocity distribution of neutral gas and more. *For more details, please feel free to contact us.

Particle-based Plasma Analysis Software 'Particle-PLUS'

basic information

**Features** - The time scheme uses an implicit method, allowing for stable time evolution calculations over a large time step Δt compared to conventional methods. - The collision reaction model between neutral gas and electrons and ions employs the Monte Carlo Scattering method, enabling accurate and rapid calculations of complex reaction processes. - The neutral gas module determines the initial neutral gas distribution used in the above plasma module, allowing for quick evaluation of gas flow using the DSMC method. - The sputtered particle module calculates the behavior of atoms sputtered from the target in plasma and neutral gas environments, such as flux distribution on opposing substrates, which can be evaluated in a short time. *For other functions and details, please feel free to contact us.*

Price range

Delivery Time

Model number/Brand name

Particle-PLUS

Applications/Examples of results

【Dual Frequency Capacitive Coupled Plasma】 - Optimization of voltage and other parameters to achieve high-density plasma - Damage to chamber walls - Optimization of power using an external circuit model - It is possible to apply voltages to the electrode plates that align with real devices - The waveform of the applied voltage can be simulated smoothly and at relatively realistic voltages - Calculations are relatively stable to avoid applying unreasonable voltages 【DC Magnetron Sputtering】 - Uniformity of erosion dependent on magnetic field distribution - Adsorption distribution of sputtered materials on the substrate 【Pulsed Voltage Magnetron Sputtering】 - Optimization of the application time of pulsed voltage to efficiently sputter materials 【Ion Implantation】 - The influence of the substrate on the erosion distribution 【Time Evolution of Applied Voltage on Electrode Plates】 - It is possible to observe physical quantities that are difficult to measure experimentally, such as electron density and ion velocity distribution - By investigating electron density and ion velocity distribution, it is possible to examine the uniformity of the film and damage to the chamber walls - By changing calculation conditions, optimization of high-density plasma generation at low power is possible

Detailed information

Particle-based Plasma Analysis Software 'Particle-PLUS'

PRODUCT

3D rarefied fluid analysis software 'DSMC-Neutrals'

PRODUCT

Recommended products

Distributors

Our company develops and sells a "Maintenance Management System" for managing and operating various plants, factories, and other facilities and assets. Currently, this system is undergoing significant evolution into one that incorporates IoT technologies, such as sensor information and input from tablet devices, as well as AI technologies like machine learning, featuring functions for failure prediction and automatic scheduling. Additionally, as part of the recent trend towards digital transformation (DX), there is a growing movement to digitize and automate manufacturing processes and research and development sites in factories to enhance operational efficiency. In line with this trend, our company provides a solution aimed at improving efficiency in research and development environments, known as the Laboratory Information Management System (LIMS), which includes features such as workflow management, data tracking, data management, data analysis, and integration of electronic lab notebooks.