ウェーブフロント 本社 Official site

Example: Particle-PLUS: GEC-CCP Device Plasma Analysis

Introduction to Particle-PLUS Analysis Case: "Plasma Analysis of GEC-CCP Device" 3D Simulation Case

This is a 3D analysis case related to CCP (Capacitively Coupled Plasma) etching, which is one of the representative dry etching methods. Particle-PLUS specializes in plasma analysis within vacuum chambers and can perform simulations of etching rates and other parameters at high speed. ◇ Features of 'Particle-PLUS' - Excels in low-pressure plasma analysis. - By combining axisymmetric models with mirror-symmetric boundary conditions, it can obtain results quickly without the need for full device simulations. - Specializes in plasma simulations for low-pressure gases, where fluid modeling is challenging. - Supports both 2D and 3D, allowing efficient analysis even for complex models. - As a strength of our in-house developed software, customization to fit customer devices is also possible. ◆ Outputs various calculation results ◆ - Potential distribution - Density distribution/temperature distribution/generation distribution of electrons and ions - Particle flux and energy flux to the walls - Energy spectrum of electrons and ions at the walls - Density distribution/temperature distribution/velocity distribution of neutral gas and more. *For more details, please feel free to contact us.

Particle-based Plasma Analysis Software "Particle-PLUS"

basic information

**Features** - The time scheme uses an implicit method, allowing for stable time evolution calculations over a large time step Δt compared to conventional methods. - The collision reaction model between neutral gas and electrons and ions employs the Monte Carlo Scattering method, enabling accurate and rapid calculations of complex reaction processes. - The neutral gas module determines the initial neutral gas distribution used in the plasma module above, allowing for quick evaluation of gas flow using the DSMC method. - The sputtered particle module calculates the behavior of atoms sputtered from the target in devices such as magnetron sputtering systems, enabling quick evaluation of flux distribution on opposing substrates. *For other functions and details, please feel free to contact us.*

Price range

Delivery Time

Model number/Brand name

Particle-PLUS

Applications/Examples of results

【Dual Frequency Capacitive Coupled Plasma】 - Optimization of voltage and other parameters to achieve high-density plasma - Damage to chamber walls - Optimization of power using an external circuit model - It is possible to apply voltages to the electrode plates that align with real devices - The waveform of the applied voltage can be smooth and simulated with relatively realistic voltages - Calculations are relatively stable to avoid applying excessive voltages 【DC Magnetron Sputtering】 - Uniformity of erosion dependent on magnetic field distribution - Adsorption distribution of sputtered materials on the substrate 【Pulsed Voltage Magnetron Sputtering】 - Optimization of the application time of pulsed voltage to efficiently sputter materials 【Ion Implantation】 - The influence of the substrate on the erosion distribution 【Time Evolution of Applied Voltage on Electrode Plates】 - It is possible to observe physical quantities that are difficult to measure experimentally, such as electron density and ion velocity distribution - By investigating electron density and ion velocity distribution, it is possible to examine the uniformity of the film and damage to the chamber walls - Changing calculation conditions allows for the optimization of high-density plasma generation at low power

Detailed information

Particle-based Plasma Analysis Software 'Particle-PLUS'

PRODUCT

3D rarefied fluid analysis software 'DSMC-Neutrals'

PRODUCT

Recommended products

Distributors