◆OLED◆ Organic vapor deposition - high-temperature metal deposition cell Max 1500℃
It is a high-performance vacuum deposition source that can be used as a high-temperature heating cell for vacuum applications, with an organic deposition source up to 800°C and a metal deposition source up to 1500°C.
The OLED evaporation source is a high-temperature deposition source for vacuum deposition with a maximum operating temperature of 1500°C. By simply replacing the body without removing the fixed base, you can switch between cells for low-temperature organic deposition (up to 800°C) such as OLEDs and high-temperature heating (up to 1500°C) cells. If used as a source for vacuum film formation, a shutter actuator is also provided. When used as a high-temperature heater above 800°C, it features an internal shield structure designed with insulation and thermal shielding in mind. The shutter adopts a flip type. Even if multiple OLED sources are installed in the chamber, they will not interfere with other components. The crucible can be removed simply by taking off the upper cap, making the material filling and replenishment process hassle-free. The main body is available for 1cc crucibles (maximum filling amount 1.5cc) and 10cc crucibles (maximum filling amount 15cc), and can be exchanged by replacing the main body with the base without removing the fixed base from the chamber. Thermocouples can be specified as either K or C types. Crucibles can be selected from alumina (standard), quartz, PBN, and carbon.
basic information
【Main Specifications】 ■ Maximum Control Temperature: 800℃ or 1500℃ ■ Operating Environment: In vacuum or inert gas (*O2 up to 800℃) ■ Heater: Tungsten filament ■ Crucible Volume: 1cc (maximum fill volume 1.5cc) ■ Crucible Material: Alumina (standard) ■ Case Material: SUS304 or Molybdenum ■ Thermocouple: Type K or Type C 【Options】 ⚫︎ Crucible Material: PBN, Graphite, Quartz ⚫︎ Heater: NiCr wire, Kanthal wire (*for O2) ⚫︎ Crucible Volume: 10cc (maximum fill volume 15cc) ⚫︎ Shutter: Pneumatic or motor-driven ⚫︎ Water Cooling Jacket ⚫︎ Controller (Heater and Shutter Control Box)
Price information
Please contact us.
Delivery Time
Model number/Brand name
◆OLED◆ Organic deposition - high-temperature metal evaporation source Max 1500℃
Applications/Examples of results
High vacuum crucible heating heater, organic material deposition source for vacuum deposition, high-temperature evaporation metal deposition source, etc.
catalog(36)
Download All Catalogs
News about this product(44)
-
◆HTE Heater◆ High Vacuum Crucible Heating Heater Max 1500℃
The HTE heater is a high-temperature heating heater for vacuum devices with a maximum operating temperature of 1500°C. It can evaporate materials with high evaporation temperatures, making it suitable for a wide range of applications as a vacuum high-temperature heater and deposition cell, from low-temperature organic deposition (up to 800°C) cells to high-temperature resistance heating deposition (up to 1500°C) MBE cells. Shutter actuators and water-cooled jackets are also available. The high-temperature heater specification above 800°C is designed with internal shielding, considering insulation and thermal shielding. 【Main Specifications】 ■ Maximum control temperature: 800°C or 1500°C ■ Operating environment: In vacuum or inert gas (*O2 up to 800°C) ■ Heater: Tungsten filament ■ Crucible volume: 1cc (maximum filling amount 1.5cc) ■ Crucible material: Alumina ■ Case material: SUS304 or Molybdenum ■ Thermocouple: K or C 【Options】 ⚫ Crucible material: PBN, Graphite, Quartz ⚫ Heater: NiCr wire, Kanthal wire (*for O2) ⚫ Crucible volume: 10cc (maximum filling amount 15cc) ⚫ Shutter: Pneumatic or motor-driven ⚫ Water-cooled jacket ⚫ Controller (for heater and shutter control)
-
★★Thermosera Japan_Thin Film Experimental Equipment_"PRODUCTS GUIDE 2022"★★
Introducing various experimental devices for research and development in semiconductors, electronic devices, fuel cells, displays, and thin film experiments. We present a range of thin film experimental devices and components for the research and development field. 【nano Benchtop Series】 Desktop type, high performance! nano Benchtop series thin film experimental devices Compact size housing high-functionality and high-spec thin film equipment. 【MiniLab Flexible Thin Film Experimental Device】 A "flexible experimental device" that combines various device configurations and necessary components according to specified requirements. ● Featured Devices - nanoPVD-S10A desktop magnetron sputtering device - nanoPVD-T15A desktop organic film and metal film deposition device - nanoCVD graphene synthesis device - ANNEAL desktop wafer annealing device - MiniLab series flexible thin film experimental device - MiniLab-GB glove box type thin film experimental device - Other components
-
★☆★☆ MiniLab Series Flexible Thin Film Experimental Device ★☆★☆
The MiniLab thin film experimental device allows for the construction of a compact, semi-customized system that eliminates waste by incorporating the optimal components and control modules according to the required film formation methods and materials from a wide range of options. By equipping a modular control unit with a Plug & Play feel, the application range expands, enabling various thin film process experiments. 【MiniLab Thin Film Experimental Device Configuration Modules】 ◎ Manufacturing Range Resistance heating deposition (TE), organic deposition (LTE), electron beam deposition (EB), sputtering (SP), CVD, dry etching 【Small Footprint & Space Saving】 - Single rack type (026): 590(W) x 590(D)mm - Dual rack type (060): 1200(W) x 590(D)mm - Triple rack type (125): 1770(W) x 755(D)mm 【Excellent Operability & Intuitive Operation Screen】 Windows PC or 7” touch panel. Easy operation that does not require advanced skills, with maximum consideration for safety. All operations except for internal component adjustments and material exchanges in the chamber are performed via the PC/HMI screen.
-
Wafer Annealing Equipment [ANNEAL] Max 1000℃ APC Automatic Pressure Control MFC x3 System Compatible with Φ4 to 6 inch Substrates
Max 1000℃, MFC up to 3 systems, APC pressure control, compatible with substrates from 4" to a maximum of 6", high vacuum annealing device (<5 × 10-7 mbar) [ANNEAL] is a research and development annealing device capable of high-temperature heat treatment of substrates such as wafers in a stable process atmosphere. It allows high-temperature processing up to 1000℃ using a heating stage installed in a high vacuum water-cooled SUS chamber. A heat shield is installed inside the chamber to ensure safety through interlock. The mass flow controller can be expanded to a maximum of 3 systems, enabling firing operations with precisely adjusted process gas pressure (APC automatic process control system option). Additionally, there are many options available, including a front view port, dry scroll pump, special substrate holder, and additional thermocouples. The heating stage inside the chamber has three variations depending on the process gas atmosphere and treatment temperature: - Halogen lamp heater: Max 500℃ - C/C composite heater: Max 1000℃ (in vacuum, inert gas only) - SiC coating heater: Max 1000℃ (vacuum, inert gas, O2)
-
Hot Stage [Substrate Heating Mechanism] Ultra-High Temperature Substrate Heating Stage Max 1800℃ _ Φ2 to Φ6 inch
High-temperature substrate heating mechanism for vacuum thin film processes, used for the development of semiconductors, electronic devices, etc. It can be utilized for various film deposition experiments on silicon substrates, sapphire substrates, compound substrates, and others. Selection of elements and materials according to ultra-high temperature substrate heating conditions (Max 1800°C) for vacuum equipment such as CVD and sputtering is possible. ◉ Compatible with ultra-high vacuum, inert gas, O2, and various process gas atmospheres. ◉ Substrate up/down/rotation mechanism and RF/DC bias application possible. ◉ Selection of elements according to the atmosphere: NiCr, Inconel, Tungsten, Graphite, CC composite, Graphite (SiC coating, PBN coating) CC composite (PG coating) ◉ Various vacuum flange connections: ICF, VF ◉ Thermocouple included ◉ Other options: Motor controller, temperature control unit, transbox.