【Mini-BENCH】Ultra High Temperature Tabletop Experimental Furnace Max 2000℃
Tabletop small-sized experimental furnace - space-saving, with a maximum operating temperature of 2000°C! We also manufacture metal furnaces for reducing atmospheres.
◉ Tabletop size, space-saving: 328(W) x 220(D) x 250(H)mm (*Reference value for 2-inch chamber) ◉ Customizable heater structure: - Cylindrical heater: For sample sintering in crucibles (for solid, powder, granule, and pellet-shaped samples) - Flat heater: For sintering Φ1" to Φ6" wafers and small chips ◉ Fast heating time of approximately 15 minutes (to 1500℃), cooling from 1500℃ to 100℃ in about 40 minutes (in vacuum and gas replacement atmosphere) ◉ High specifications & high cost performance ◉ Simple structure, excellent operability Various high-temperature heating experiments for small samples in laboratories, as well as research and development of new materials, can be easily conducted with simple operations. The main unit is compact yet suitable for research and development in a wide range of fields.
basic information
◆Device Configuration◆ We will propose a configuration that meets your budget and objectives. (A) Minimum configuration: Chamber + Temperature control unit (B) Above minimum configuration (A) + Vacuum exhaust system (pump, gauge, valve, vacuum piping) ◆Basic Specifications◆ - Heater: C/C composite, PG coated C/C composite (carbon furnace), tungsten (metal furnace) - Insulation material: Graphite felt (carbon furnace), tungsten/molybdenum (metal furnace), or tungsten/molybdenum multilayer shield - Temperature control: Digital programmable controller, C thermocouple - Achievable vacuum level: 1x10-2 Pascal (*However, in the case of an empty furnace) - Power supply specifications: AC200V 50/60HZ three-phase 6KVA - Cooling water: 3L/min, 0.4Mpa 25-30℃ ◆Control Box Specifications◆ - Programmable temperature controller - DC power supply unit or external transformer box - Current and voltage meters - Heater circuit trip switch - Main power switch ◆Options◆ - Vacuum exhaust system - Custom crucible Others
Price information
Please consult with us.
Delivery Time
Model number/Brand name
Mini-BENCH furnace
Applications/Examples of results
◆Main Application Areas◆ - Development of new materials - Material analysis - Application in various advanced material developments
Detailed information
catalog(37)
Download All Catalogs
News about this product(60)
-

4-Yen Multi-Sputtering Device 【MiniLab-S060】
4 cathodes with Φ2 inch configuration Simultaneous film deposition: 3-component simultaneous deposition (RF 500W or DC 850W) + HiPIMS (PulseDC 5KW) x 1 Power distribution and configuration settings for 4 cathodes can be freely changed via the HMI screen using the plasma relay switch 3 MFC systems (Ar, O2, N2) for reactive sputtering RIE etching stage RF 300W (main chamber) + <30W soft etching (LL chamber) Substrate heating: Max 500℃, 800℃, or 1000℃ (C/C or SiC coating) Substrate rotation and vertical movement (automatically controlled by stepping motor) APC automatic control: Upstream (MFC flow adjustment) or downstream (automatic valve opening adjustment on the exhaust side) Dimensions: 1,120(W) x 800(D) ● Mixed specifications for resistance heating deposition, organic material deposition, EB deposition, PECVD, etc. are also possible.
-

★☆★☆【MiniLab-026】Small Thin Film Experimental Device for R&D Development★☆★☆
This is a flexible thin film experimental device for R&D that eliminates waste by integrating the necessary minimum modules and controllers into a 19" compact rack with a Plug & Play feel, achieving compact size, space-saving design, simple operation, and high cost performance. It supports magnetron sputtering (up to 3 sources) or resistance heating evaporation (metal sources up to 2, organic materials x4), and can also be equipped with a substrate heating stage, allowing for the production of annealing devices and RF etching. There is also a glove box storage type available (specifications to be discussed). We offer a wide range of optional components that can be flexibly customized. ◉ Φ2 inch magnetron cathode (up to 3 sources) ◉ Resistance heating evaporation source filament, crucible, boat type (up to 4 poles with automatic switching via controller) ◉ Organic evaporation cell: 1cc or 5cc ◉ Glove box compatible (optional, specifications to be discussed) ◉ Other options: simultaneous film deposition, HiPIMS, automatic film deposition controller, custom substrate holders, load lock, substrate rotation/heating/cooling, and many more options available. *Please first contact us with your required specifications, and we will configure the system to meet your needs.
-

★☆★☆【MiniLab-026】Flexible Thin Film Experimental Device for R&D★☆★☆
This is a flexible thin-film experimental device for R&D that achieves minimal waste, compact size, simple operation, and high cost performance by integrating the necessary minimum modules and controllers into a 19" compact rack with a Plug&Play feel. It supports magnetron sputtering (up to 3 sources) or resistance heating evaporation (metal sources up to 2, organic materials x4), and can be equipped with a substrate heating stage, allowing for the production of annealing devices and RF etching. A glove box storage type is also available (specifications to be discussed). We offer a wide range of optional components that can be flexibly customized. ◉ Φ2 inch magnetron cathode (up to 3 sources) ◉ Resistance heating evaporation source filament, crucible, boat type (up to 4 poles with automatic switching via controller) ◉ Organic evaporation cell: 1cc or 5cc ◉ Can be equipped with a glove box (optional, specifications to be discussed) ◉ Other options: Simultaneous film deposition, HiPIMS, automatic film deposition controller, custom substrate holders, load lock, substrate rotation/heating/cooling, and many other options available. *Please first contact us with your required specifications, and we will configure the system according to your needs.
-

Multi-functional Sputtering System 【MiniLab-S060】
4 cathodes with Φ2 inch mounted Simultaneous film formation: 3-component simultaneous film formation (RF 500W or DC 850W) + HiPIMS (PulseDC 5KW) x 1 Power distribution and configuration settings for 4 cathodes can be freely changed from the HMI screen using the plasma relay switch 3 MFC systems (Ar, O2, N2) for reactive sputtering RIE etching stage RF 300W (main chamber) + <30W soft etching (LL chamber) Substrate heating: Max 500℃, 800℃, or 1000℃ (C/C or SiC coat) Substrate rotation and vertical movement (automatically controlled by stepping motor) APC automatic control: Upstream (MFC flow adjustment) or downstream (automatic valve opening adjustment on the exhaust side) Dimensions: 1,120(W) x 800(D) ● Mixed specifications for resistance heating deposition, organic material deposition, EB deposition, PECVD, etc. are also possible.
-

★【MiniLab-060】Flexible Thin Film Experimental Device★ Thermosera Japan
Compact/Space-saving, High-spec 60ℓ volume multi-thin film experimental device that can accommodate various applications by integrating thin film modules such as evaporation, sputtering, EB, and annealing. Compact/Space-saving, High-spec thin film experimental device. Combinations possible from the following evaporation sources: - Resistance heating evaporation source x up to 4 - Organic evaporation source x up to 4 - Electron beam evaporation - 2-inch magnetron sputtering cathode x 4 - Plasma etching: can be installed in either the main chamber or the load lock chamber 【Small Footprint/Space-saving】 - Dual rack type (MiniLab-060): 1200(W) x 590(D)mm 【Excellent Operability/Intuitive Operation Screen】 Windows PC or 7” touch panel. Easy operation regardless of skill level, with maximum safety considerations.
Recommended products
Distributors
【Endless possibility_thermal engineering...】 Our company sells vacuum thin film devices for semiconductor and electronic device fundamental research, ultra-high temperature heaters for CVD substrate heating, experimental furnaces, temperature measurement equipment, and more. To meet the endless demand for "heat," which is indispensable in any era, and to respond to various requests in the field of fundamental technology development, we aim to introduce the latest equipment and contribute to research and development in Japan.




















































