[Hot Stage] Ultra High Temperature Substrate Heating Stage Max 1800℃
An ultra-high temperature substrate heating stage that allows for substrate elevation, rotation, and RF/DC substrate bias all in one device! 'All-In-One' component.
Semiconductors, electronic substrates, vacuum thin film process equipment and research and development【Ultra-high temperature substrate heating mechanism】 Compatible substrate sizes: Φ2 to 6 inches Can be used in vacuum (UHV compatible), inert gas, O2, and various process reactive gas atmospheres, etc. (Details to be discussed separately)
basic information
◉ Compatible with ultra-high vacuum, inert gas atmosphere, and various other process gas atmospheres ◉ Stage vertical movement (substrate or heater elevation, two-stage elevation for substrate & heater) ◉ Substrate rotation ◉ RF (1KW)/DC (800V) bias application (reverse sputtering) ◉ Selection of elements according to the operating environment: Graphite, CC composite, halogen lamp heater, graphite/SiC coating, graphite/PBN coating, PG coating, AlN heater ◉ Various vacuum flange connections: ICF, ISO (KF/LF), JIS (VG/VF) flanges ◉ K, C, R thermocouples included ◉ Other options: temperature control unit, Inc, graphite or SiC substrate holder
Price information
For details, please contact our company. Prices may vary depending on specifications, so feel free to contact us.
Delivery Time
Applications/Examples of results
【Applications】 CVD/PVD (vacuum deposition/sputtering equipment), various high-temperature annealing applications, etc. 【Examples】 - TCVD, PECVD, sputtering and other film deposition equipment - High-temperature upgrades of existing thin film equipment heating stages, installation of additional mechanisms for up/down, rotation, and bias - Installation on new process evaluation machines and prototype machines
Detailed information
-
4-inch hot stage max 1200°C with RF bias example
-
4-inch hot stage with water cooling Installation example of 4-inch hot stage with water-cooled housing Max 1200℃ graphite element Inconel wafer holder
-
Atmospheric Side Z-axis Drive Motor Atmospheric Side Z-axis Drive Motor (50mm Stroke Example) RF Bias
-
2inch hot stage NiCr element max1000C with bias 2inch hot stage NiCr element max1000C with bias Inconel wafer holder
catalog(37)
Download All Catalogs
News about this product(60)
-

4-Yen Multi-Sputtering Device 【MiniLab-S060】
4 cathodes with Φ2 inch configuration Simultaneous film deposition: 3-component simultaneous deposition (RF 500W or DC 850W) + HiPIMS (PulseDC 5KW) x 1 Power distribution and configuration settings for 4 cathodes can be freely changed via the HMI screen using the plasma relay switch 3 MFC systems (Ar, O2, N2) for reactive sputtering RIE etching stage RF 300W (main chamber) + <30W soft etching (LL chamber) Substrate heating: Max 500℃, 800℃, or 1000℃ (C/C or SiC coating) Substrate rotation and vertical movement (automatically controlled by stepping motor) APC automatic control: Upstream (MFC flow adjustment) or downstream (automatic valve opening adjustment on the exhaust side) Dimensions: 1,120(W) x 800(D) ● Mixed specifications for resistance heating deposition, organic material deposition, EB deposition, PECVD, etc. are also possible.
-

★☆★☆【MiniLab-026】Small Thin Film Experimental Device for R&D Development★☆★☆
This is a flexible thin film experimental device for R&D that eliminates waste by integrating the necessary minimum modules and controllers into a 19" compact rack with a Plug & Play feel, achieving compact size, space-saving design, simple operation, and high cost performance. It supports magnetron sputtering (up to 3 sources) or resistance heating evaporation (metal sources up to 2, organic materials x4), and can also be equipped with a substrate heating stage, allowing for the production of annealing devices and RF etching. There is also a glove box storage type available (specifications to be discussed). We offer a wide range of optional components that can be flexibly customized. ◉ Φ2 inch magnetron cathode (up to 3 sources) ◉ Resistance heating evaporation source filament, crucible, boat type (up to 4 poles with automatic switching via controller) ◉ Organic evaporation cell: 1cc or 5cc ◉ Glove box compatible (optional, specifications to be discussed) ◉ Other options: simultaneous film deposition, HiPIMS, automatic film deposition controller, custom substrate holders, load lock, substrate rotation/heating/cooling, and many more options available. *Please first contact us with your required specifications, and we will configure the system to meet your needs.
-

★☆★☆【MiniLab-026】Flexible Thin Film Experimental Device for R&D★☆★☆
This is a flexible thin-film experimental device for R&D that achieves minimal waste, compact size, simple operation, and high cost performance by integrating the necessary minimum modules and controllers into a 19" compact rack with a Plug&Play feel. It supports magnetron sputtering (up to 3 sources) or resistance heating evaporation (metal sources up to 2, organic materials x4), and can be equipped with a substrate heating stage, allowing for the production of annealing devices and RF etching. A glove box storage type is also available (specifications to be discussed). We offer a wide range of optional components that can be flexibly customized. ◉ Φ2 inch magnetron cathode (up to 3 sources) ◉ Resistance heating evaporation source filament, crucible, boat type (up to 4 poles with automatic switching via controller) ◉ Organic evaporation cell: 1cc or 5cc ◉ Can be equipped with a glove box (optional, specifications to be discussed) ◉ Other options: Simultaneous film deposition, HiPIMS, automatic film deposition controller, custom substrate holders, load lock, substrate rotation/heating/cooling, and many other options available. *Please first contact us with your required specifications, and we will configure the system according to your needs.
-

Multi-functional Sputtering System 【MiniLab-S060】
4 cathodes with Φ2 inch mounted Simultaneous film formation: 3-component simultaneous film formation (RF 500W or DC 850W) + HiPIMS (PulseDC 5KW) x 1 Power distribution and configuration settings for 4 cathodes can be freely changed from the HMI screen using the plasma relay switch 3 MFC systems (Ar, O2, N2) for reactive sputtering RIE etching stage RF 300W (main chamber) + <30W soft etching (LL chamber) Substrate heating: Max 500℃, 800℃, or 1000℃ (C/C or SiC coat) Substrate rotation and vertical movement (automatically controlled by stepping motor) APC automatic control: Upstream (MFC flow adjustment) or downstream (automatic valve opening adjustment on the exhaust side) Dimensions: 1,120(W) x 800(D) ● Mixed specifications for resistance heating deposition, organic material deposition, EB deposition, PECVD, etc. are also possible.
-

★【MiniLab-060】Flexible Thin Film Experimental Device★ Thermosera Japan
Compact/Space-saving, High-spec 60ℓ volume multi-thin film experimental device that can accommodate various applications by integrating thin film modules such as evaporation, sputtering, EB, and annealing. Compact/Space-saving, High-spec thin film experimental device. Combinations possible from the following evaporation sources: - Resistance heating evaporation source x up to 4 - Organic evaporation source x up to 4 - Electron beam evaporation - 2-inch magnetron sputtering cathode x 4 - Plasma etching: can be installed in either the main chamber or the load lock chamber 【Small Footprint/Space-saving】 - Dual rack type (MiniLab-060): 1200(W) x 590(D)mm 【Excellent Operability/Intuitive Operation Screen】 Windows PC or 7” touch panel. Easy operation regardless of skill level, with maximum safety considerations.
Recommended products
Distributors
【Endless possibility_thermal engineering...】 Our company sells vacuum thin film devices for semiconductor and electronic device fundamental research, ultra-high temperature heaters for CVD substrate heating, experimental furnaces, temperature measurement equipment, and more. To meet the endless demand for "heat," which is indispensable in any era, and to respond to various requests in the field of fundamental technology development, we aim to introduce the latest equipment and contribute to research and development in Japan.





















































