□■□【MiniLab-026】Flexible Thin Film Experimental Device□■□
Compact and space-saving! Ideal for research and development. Flexible configuration for purposes such as deposition, sputtering, and annealing.
This is a flexible R&D thin film experimental device that achieves minimal waste, compact size, simple operation, and high cost performance by integrating the necessary minimum modules and controllers into a 19" compact rack with a Plug&Play feel. It supports magnetron sputtering (up to 3 sources) or resistance heating evaporation (metal sources up to 4, organic materials x4), and it can also be equipped with a substrate heating stage for annealing and plasma etching. A glove box storage type is also available (*specifications to be discussed). We offer a wide range of optional components that can be flexibly customized. ◉ Maximum substrate size: Φ6 inch ◉ Resistance heating evaporation source filament, crucible, boat type (up to 4 sources) ◉ Organic evaporation source: 1cc or 5cc ◉ Φ2 inch magnetron cathode (up to 3 sources) ◉ Dry etching ◉ Glove box compatible (optional, specifications to be discussed) ◉ Other options: simultaneous deposition from 2 sources, HiPIMS, automatic thin film controller, custom substrate holder, substrate rotation/lifting, substrate heating, and many other options available. *Please first contact us with your required specifications, and we will configure the system to meet your needs.
basic information
The MiniLab-026 is a compact thin film experimental device that uses the smallest 26L volume chamber in the series. 【Small Footprint & Space-Saving】 - Single rack type (MiniLab-026): 590(W) x 590(D)mm 【Excellent Operability & Intuitive Operation Screen】 Windows PC or 7” touch panel. Easy operation that does not require expertise, with maximum safety considerations. 【Main Specifications】 ◉ Chamber: SUS304 clamshell type ◉ All components housed in a 19-inch single rack ◉ Resistance heating evaporation source (up to 4 sources), organic evaporation source (up to 4 sources), or Φ2" magnetron (up to 3 units), substrate heating stage, etc. ◉ High precision film thickness control ◉ Turbo molecular pump + rotary pump (dry pump option) ◉ Glove box connection specification (*specification consultation required) ◉ Abundant options: substrate heating/cooling, rotation, special substrate holder, etc. *For more detailed specifications of the MiniLab series, please contact us.
Price range
Delivery Time
Model number/Brand name
MiniLab-026
Applications/Examples of results
- Electronic components - Optical film - Anti-reflective film - Organic transistors, organic EL
Detailed information
-
Helical Coil Filament Model. MiniLab-LT26A Chamber Layout *The photo shows a three-pole type. It is a base chamber equipped with numerous spare ports, allowing for easy rearrangement and expansion.
-
Basket type thermal source for MiniLab-LT26A resistance heating evaporation device, basket type x4 pole type.
-
Organic material evaporation source cell LTES-1cc or 5cc Organic source cell for MiniLab series Easy to attach and detach the crucible during material replenishment Alumina or quartz crucible Temperature control range 80 to 600°C UHV compatible High-precision PID automatic film thickness loop control is possible with dedicated controllers LTEC-1S (1ch) and LTEC-4S (4ch) (±0.1Å/sec)
-
LT26A_Glovebox-system-installed-1 LT26A_Glovebox-system-installed-1
-
LT26A_Glovebox-system-installed-2 LT26A_Glovebox-system-installed-2
Related Videos
catalog(37)
Download All Catalogs
News about this product(60)
-
◆HTE Heater◆ High Vacuum Crucible Heating Heater Max 1500℃
The HTE heater is a high-temperature heating heater for vacuum devices with a maximum operating temperature of 1500°C. It can evaporate materials with high evaporation temperatures, making it suitable for a wide range of applications as a vacuum high-temperature heater and deposition cell, from low-temperature organic deposition (up to 800°C) cells to high-temperature resistance heating deposition (up to 1500°C) MBE cells. Shutter actuators and water-cooled jackets are also available. The high-temperature heater specification above 800°C is designed with internal shielding, considering insulation and thermal shielding. 【Main Specifications】 ■ Maximum control temperature: 800°C or 1500°C ■ Operating environment: In vacuum or inert gas (*O2 up to 800°C) ■ Heater: Tungsten filament ■ Crucible volume: 1cc (maximum filling amount 1.5cc) ■ Crucible material: Alumina ■ Case material: SUS304 or Molybdenum ■ Thermocouple: K or C 【Options】 ⚫ Crucible material: PBN, Graphite, Quartz ⚫ Heater: NiCr wire, Kanthal wire (*for O2) ⚫ Crucible volume: 10cc (maximum filling amount 15cc) ⚫ Shutter: Pneumatic or motor-driven ⚫ Water-cooled jacket ⚫ Controller (for heater and shutter control)
-
★★Thermosera Japan_Thin Film Experimental Equipment_"PRODUCTS GUIDE 2022"★★
Introducing various experimental devices for research and development in semiconductors, electronic devices, fuel cells, displays, and thin film experiments. We present a range of thin film experimental devices and components for the research and development field. 【nano Benchtop Series】 Desktop type, high performance! nano Benchtop series thin film experimental devices Compact size housing high-functionality and high-spec thin film equipment. 【MiniLab Flexible Thin Film Experimental Device】 A "flexible experimental device" that combines various device configurations and necessary components according to specified requirements. ● Featured Devices - nanoPVD-S10A desktop magnetron sputtering device - nanoPVD-T15A desktop organic film and metal film deposition device - nanoCVD graphene synthesis device - ANNEAL desktop wafer annealing device - MiniLab series flexible thin film experimental device - MiniLab-GB glove box type thin film experimental device - Other components
-
★☆★☆ MiniLab Series Flexible Thin Film Experimental Device ★☆★☆
The MiniLab thin film experimental device allows for the construction of a compact, semi-customized system that eliminates waste by incorporating the optimal components and control modules according to the required film formation methods and materials from a wide range of options. By equipping a modular control unit with a Plug & Play feel, the application range expands, enabling various thin film process experiments. 【MiniLab Thin Film Experimental Device Configuration Modules】 ◎ Manufacturing Range Resistance heating deposition (TE), organic deposition (LTE), electron beam deposition (EB), sputtering (SP), CVD, dry etching 【Small Footprint & Space Saving】 - Single rack type (026): 590(W) x 590(D)mm - Dual rack type (060): 1200(W) x 590(D)mm - Triple rack type (125): 1770(W) x 755(D)mm 【Excellent Operability & Intuitive Operation Screen】 Windows PC or 7” touch panel. Easy operation that does not require advanced skills, with maximum consideration for safety. All operations except for internal component adjustments and material exchanges in the chamber are performed via the PC/HMI screen.
-
Wafer Annealing Equipment [ANNEAL] Max 1000℃ APC Automatic Pressure Control MFC x3 System Compatible with Φ4 to 6 inch Substrates
Max 1000℃, MFC up to 3 systems, APC pressure control, compatible with substrates from 4" to a maximum of 6", high vacuum annealing device (<5 × 10-7 mbar) [ANNEAL] is a research and development annealing device capable of high-temperature heat treatment of substrates such as wafers in a stable process atmosphere. It allows high-temperature processing up to 1000℃ using a heating stage installed in a high vacuum water-cooled SUS chamber. A heat shield is installed inside the chamber to ensure safety through interlock. The mass flow controller can be expanded to a maximum of 3 systems, enabling firing operations with precisely adjusted process gas pressure (APC automatic process control system option). Additionally, there are many options available, including a front view port, dry scroll pump, special substrate holder, and additional thermocouples. The heating stage inside the chamber has three variations depending on the process gas atmosphere and treatment temperature: - Halogen lamp heater: Max 500℃ - C/C composite heater: Max 1000℃ (in vacuum, inert gas only) - SiC coating heater: Max 1000℃ (vacuum, inert gas, O2)
-
Hot Stage [Substrate Heating Mechanism] Ultra-High Temperature Substrate Heating Stage Max 1800℃ _ Φ2 to Φ6 inch
High-temperature substrate heating mechanism for vacuum thin film processes, used for the development of semiconductors, electronic devices, etc. It can be utilized for various film deposition experiments on silicon substrates, sapphire substrates, compound substrates, and others. Selection of elements and materials according to ultra-high temperature substrate heating conditions (Max 1800°C) for vacuum equipment such as CVD and sputtering is possible. ◉ Compatible with ultra-high vacuum, inert gas, O2, and various process gas atmospheres. ◉ Substrate up/down/rotation mechanism and RF/DC bias application possible. ◉ Selection of elements according to the atmosphere: NiCr, Inconel, Tungsten, Graphite, CC composite, Graphite (SiC coating, PBN coating) CC composite (PG coating) ◉ Various vacuum flange connections: ICF, VF ◉ Thermocouple included ◉ Other options: Motor controller, temperature control unit, transbox.