Vacuum Deposition Device "MiniLab-026"
Compact and space-saving! Ideal for research and development, flexible configuration for purposes such as deposition, sputtering, and annealing.
This is a flexible thin film experimental device for R&D that achieves minimal waste, compact size, simple operation, and high cost performance by integrating the necessary minimum modules and controllers into a 19" compact rack with a Plug&Play feel. It supports magnetron sputtering (up to 3 sources) or resistance heating evaporation (metal sources up to 4, organic materials x4), and can be equipped with a substrate heating stage, allowing for the production of annealing devices and plasma etching. There is also a glove box storage type available (specifications to be discussed). A wide range of optional components that can be flexibly customized is available. ◉ Maximum substrate size: Φ6 inch ◉ Resistance heating evaporation source filament, crucible, boat type (up to 4 sources) ◉ Organic evaporation source: 1cc or 5cc ◉ Φ2 inch magnetron cathode (up to 3 sources) ◉ Dry etching ◉ Glove box compatible (optional, specifications to be discussed) ◉ Other options: simultaneous deposition from 2 sources, HiPIMS, automatic thin film controller, custom substrate holders, substrate rotation/lifting, substrate heating, and many more options available. * Please first contact us with your required specifications, and we will configure the system according to your needs.
basic information
The MiniLab-026 is a compact thin film experimental device that uses the smallest 26L volume chamber in the series. 【Small Footprint & Space-Saving】 - Single rack type (MiniLab-026): 590(W) x 590(D)mm 【Excellent Operability & Intuitive Operation Screen】 Windows PC or 7” touch panel. Easy operation that does not require advanced skills, with maximum safety considerations. 【Main Specifications】 ◉ Chamber: SUS304 clamshell type ◉ All components housed in a 19-inch single rack ◉ Resistance heating evaporation source (up to 4 sources), organic evaporation source (up to 4 sources), or Φ2" magnetron (up to 3 units), substrate heating stage, etc. ◉ High-precision film thickness control ◉ Turbo molecular pump + rotary pump (dry pump option) ◉ Glove box connection specification (*specification consultation required) ◉ Abundant options: substrate heating/cooling, rotation, special substrate holder, etc. *For more detailed specifications of the MiniLab series, please contact us.
Price range
Delivery Time
Model number/Brand name
MiniLab-LT26A
Applications/Examples of results
- Electronic components - Optical film - Anti-reflective film - Organic transistors, organic EL
Detailed information
-
Helical Coil Filament Model. MiniLab-LT26A Chamber Layout *The photo shows a three-pole type. It is a base chamber equipped with multiple spare ports, allowing for easy rearrangement and expansion.
-
Basket type thermal source for MiniLab-LT26A resistance heating evaporation device, basket type x4 pole type.
-
Organic material evaporation source cell LTES-1cc or 5cc Organic source cell for MiniLab series Easy to attach and detach the crucible during material replenishment Alumina or quartz crucible Temperature control range 80 to 600°C UHV compatible High precision PID automatic film thickness loop control is possible with dedicated controllers LTEC-1S (1ch), LTEC-4S (4ch) (±0.1Å/sec)
-
LT26A_Glovebox-system-installed-1 LT26A_Glovebox-system-installed-1
-
LT26A_Glovebox-system-installed-2 LT26A_Glovebox-system-installed-2
Related Videos
catalog(37)
Download All Catalogs
News about this product(6)
-
Multi-Target Sputtering Device [MiniLab-125] Compatible with Φ8" SiC Coating Equipped with 1000℃ Heater Stage! Compact Size!
Multifunctional Multi-Sputtering Device (Compatible with Φ8inch Substrates) - Simultaneous deposition of three components + one component Pulse DC sputtering - Flexible arrangement of RF500W and DC850W power supplies to three cathodes (Source 1, 2, 3) - Equipped with a 5KW Pulse DC power supply → used with dedicated cathode (4) - Substrate heating stage Max 800℃ (SiC coated heater can achieve Max 1000℃) - MFC x 3 systems (Ar, O2, N2) for reactive sputtering - Main chamber RIE etching stage RF300W - LL chamber <30W low power controlled soft etching - Unique "Soft-Etching" technology reduces substrate damage through substrate bias - Touch panel or Windows PC operation: All operations can be performed on the touch panel/PC without dispersing control. - Equipment installation dimensions: 1,960(W) x 1,100(D) x 1,700(H) mm - Multi-chamber type can also be manufactured. ● Mixed specifications for resistance heating deposition, organic material deposition, EB deposition, PECVD, etc. are also possible.
-
4-Yen Multi-Sputtering Device 【MiniLab-S060】
4 cathodes with Φ2 inch configuration Simultaneous film deposition: 3-component simultaneous deposition (RF 500W or DC 850W) + HiPIMS (PulseDC 5KW) x 1 Power distribution and configuration settings for 4 cathodes can be freely changed via the HMI screen using the plasma relay switch 3 MFC systems (Ar, O2, N2) for reactive sputtering RIE etching stage RF 300W (main chamber) + <30W soft etching (LL chamber) Substrate heating: Max 500℃, 800℃, or 1000℃ (C/C or SiC coating) Substrate rotation and vertical movement (automatically controlled by stepping motor) APC automatic control: Upstream (MFC flow adjustment) or downstream (automatic valve opening adjustment on the exhaust side) Dimensions: 1,120(W) x 800(D) ● Mixed specifications for resistance heating deposition, organic material deposition, EB deposition, PECVD, etc. are also possible.
-
【MiniLab】 Evaporation/Sputtering Dual Chamber System
Two thin film experimental devices are connected by a load lock mechanism. Different film deposition devices (sputtering - evaporation, etc.) are seamlessly connected via the load lock. With Moorfield's unique load lock system, connections to the process chamber on the left, right, and rear are also possible (see photo below). 1. MiniLab-E080A (Evaporation Device) - EB evaporation: 7cc crucible x 6 - Resistance heating evaporation x 2 - Organic evaporation limit x 2 2. MiniLab-S060A (Sputtering Device) - Φ2" Magnetron cathode x 4 for simultaneous sputtering - Compatible with both DC and RF power supplies 3. Load Lock Chamber - Plasma etching stage In the load lock chamber, plasma cleaning of the substrate surface is performed using the "RF/DC substrate bias stage," and the company's unique "soft etching" technology allows for a <30W low-power, damage-free plasma etching stage. This enables delicate etching processes that are prone to damage, such as 2D (removal of resists like PMMA), graphene delamination, and etching of Teflon substrates. (*This can also be installed in the main chamber stage.)
-
☆★☆ Spatter and Vapor Deposition Source Combined Film Formation Device 【nanoPVD-ST15A】 ☆★☆
Sputter Cathode and Co-evaporation Source Mixed Thin Film Experimental Device. Metal deposition, organic deposition, and sputter cathode are installed in a compact frame. A resistance heating evaporation source (for metal deposition), an organic evaporation source (for organic materials), and magnetron sputtering (for metals and insulating materials) are installed in the chamber, allowing for various thin film experimental setups within a single chamber. ◉ Three combinations available: 1. Sputter Cathode + Resistance Heating Evaporation Source x2 2. Sputter Cathode + Organic Evaporation Source x2 3. Sputter Cathode + Resistance Heating Source x1 + Organic Evaporation Source x1 (*DC sputtering only) 【Specifications】 ◉ Compatible substrates: up to Φ4 inches ◉ Sputtering: 2" cathode x up to 3 sources ◉ Vacuum deposition: Resistance heating evaporation (up to 2), organic evaporation (up to 4) ◉ 7" touch panel operation with PLC automatic process control ◉ APC automatic pressure control ◉ 1 line of Ar gas (standard) + expandable with N2, O2 ◉ Connects to a Windows PC via USB for recipe creation and storage. Data logging on PC ◉ Various other options available ◉ Easy operation with a 7" touch panel and PLC automatic process control
-
Sputtering/Dual Chamber System【MiniLab-E080A/S060A】
Two thin-film experimental devices are connected via a load lock mechanism. Different film deposition devices (sputtering - evaporation, etc.) are seamlessly connected through the load lock. With Moorfield's unique load lock system, connections to the left, right, and rear process chambers are also possible (see photo below). 1. MiniLab-E080A (Evaporation Device) - EB Evaporation: 7cc crucible x 6 - Resistance Heating Evaporation x 2 - Organic Evaporation Limit x 2 2. MiniLab-S060A (Sputtering Device) - Φ2" Magnetron Cathode x 4 sources for simultaneous sputtering - Compatible with both DC and RF power supplies 3. Load Lock Chamber - Plasma Etching Stage In the load lock chamber, plasma cleaning of the substrate surface is performed using the "RF/DC substrate bias stage," and the company's unique 'soft etching' technology allows for a <30W low-power, damage-free plasma etching stage. This enables delicate etching processes that are prone to damage, such as 2D (removal of resists like PMMA), graphene delamination, and etching of Teflon substrates. (*This can also be installed in the main chamber stage.)
Recommended products
Distributors
【Endless possibility_thermal engineering...】 Our company sells vacuum thin film devices for semiconductor and electronic device fundamental research, ultra-high temperature heaters for CVD substrate heating, experimental furnaces, temperature measurement equipment, and more. To meet the endless demand for "heat," which is indispensable in any era, and to respond to various requests in the field of fundamental technology development, we aim to introduce the latest equipment and contribute to research and development in Japan.